
Natural Computing — Stochastic Diffusion
Search

Andrew O. Martin
The Centre for Intelligent Data Analytics

http://www.aomartin.co.uk/uploads/natural-computing.pdf

9:05–10:55 Wednesday 17 October 2018
PSH 314

http://www.aomartin.co.uk/uploads/natural-computing.pdf

Stochastic Diffusion Search (SDS)

Initialise all agents
a as inactive

Diffuse phase

Test phase

Is global activity stable? Halt
YesNo

Global activity is the proportion of active agents.

Test phase

For each agent a
with hypothesis h

Randomly pick a partial
evaluation function f

Does f (h)
return True?

a becomes
inactive

a becomes active

No Yes

f can be any boolean function of h.

Diffuse phase

For each
agent a

Is a active?

Poll random agent p

No

Is p active?

a copies the
hypothesis of p

Yes

a takes a random
hypothesis

No

a retains
hypothesis

Yes

Inspired by the ants, we added one condition to both sides.

An instance of SDS

1. Initialise a list of inactive agents

2. While the halting condition is not met

2.1 Perform a diffusion phase; where all agents update their
hypothesis

2.2 Perform a test phase; where all agents update their activity

3. Return the hypothesis with the most active agents

Example SDS

Algorithm 1 Standard SDS

1: while halting condition is not reached do
2: for each agent in swarm do . Diffusion phase
3: if agent is inactive then
4: poll a random agent
5: if polled agent is active then
6: agent copies polled agent’s hypothesis
7: else
8: agent adopts a random hypothesis

9: for each agent in swarm do . Test phase
10: agent selects a random microtest (f)
11: agents set activity to result of f (agent’s hypothesis)

12: return largest cluster

String Search Example

Algorithm 2 String Search SDS

1: while active agents() < 90 do
2: for each agent in swarm do . Diffusion phase
3: if agent is inactive then
4: poll a random agent
5: if polled agent is active then
6: agent copies polled agent’s hypothesis
7: else
8: agent.hyp = random.int(text.length)

9: for each agent in swarm do . Test phase
10: f = random.int(model.length)

11: agent.active = model[f] == text[agent.hyp+f]

12: return largest cluster

The Diffusion Phase

Each inactive agent randomly polls another agent and acts
depending on the polled agent’s activity value.

active The inactive agent copies the hypothesis of polled
agent.

inactive The inactive agent selects a hypothesis at random.

The Test Phase

Each agent partially evaluates their hypothesis by passing it as
input to a randomly selected microtest function.

The agents update their activity value depending on the result.

0 10 20 30 40 50
Iteration

0

0.2

0.4

0.6

0.8

1
Pr

op
or

tio
n

of
 sw

ar
m

Global activity
Noise active
Solution active

Weak halting criterion

0 10 20 30 40 50
Iteration

0

0.2

0.4

0.6

0.8

1
Pr

op
or

tio
n

of
 sw

ar
m

Global activity
Noise active
Solution active

Strong halting criterion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Vanilla SDS

solution
noise

inactive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Reducing SDS

solution
noise

inactive

Why swarm intelligence?

No executive control.

Can avoid symbolic computation.

Nature inspired, biologically plausible.

Tolerant to noise, including a dynamic search space.

Real world problems often require good solutions quickly.

Why SDS in particular?

Invented by Bishop in 1989. First Swarm Intelligence algorithm.

Easy to model mathematically.

Easy to program.

Many interesting major variants.

Mathematical results

SDS clusters are stable, lasting for 10602 iterations.

SDS clusters are sensitive, to within 10−6.

SDS will converge to the optimal with probability tending to 1.

SDS outperforms other algorithms when the evaluation function is
highly decomposable.

SDS time complexity increases sub-linearly with the search space.

Mathematical results

Given;
α, the probability of an agent becoming active when at the optimal
hypothesis; and
β, the probability of becoming active when not at the solution.

SDS will not converge if

α <
1

2 − β
(1)

Otherwise SDS converges to γ, the final number of active agents.

γ =
α(2 − β) − 1

α− β
(2)

Major SDS variants
Context Free SDS

In the diffusion phase active agents also poll random agents.

If the polled agent is active, the polling agent becomes inactive.

+ More inactive agents means more exploration of the search space
− More inactive agents means less cluster stability

Good for cases with large search spaces and the requirement to
find the single stand-out optimal solution.

Major SDS variants
Context Sensitive SDS

In the diffusion phase active agents also poll random agents.

If the polled agent is active, and they share a hypothesis the
polling agent becomes inactive.

+ Multiple stable and proportionate clusters may form
− Multiple clusters leaves very few agents exploring the search
space

Good for cases where a few good solutions are needed quickly.

Major SDS variants
Multitesting

An agent performs multiple tests and sets their activity to a
function of the results. E.g. ANDing all the results together to
reduce activity, or ORing all the results together to increase
activity.

+ Allows SDS to converge to optimal solutions in cases which
would otherwise reach local minima, or not converge at all
− Extra tests increase computational complexity.

Good for search spaces where there are strong suboptimal
solutions, or weak optimal solutions.

Major SDS variants
Multidiffusion

An agent polls multiple agents in the diffusion phase, and responds
if any/all of them are active.

+ Can be used to increase cluster stability
− Increased cluster stability leads to more local minima

Good for cases where hypothesis generation is computationally
expensive.

Major SDS variants
Comparative Test Phase

Microtest functions return real numbers, not boolean values.
Agents then determine their activity by comparing their result with
that of a random agent.

+ No need to define a manual threshold for going active
+ Half the swarm will be active in proportionately sized clusters
+ Can be used to sort a list, even a changing one
− “Nontransitive dice”1 situations where A > B > C > A

Good for continuous global optimisation tasks.

1A:249, B:168, C:357

Major SDS variants
Transmission Error

When an agent copies the hypothesis of another agent, it is
perturbed somewhat.

+ A form of local hill-climbing optimisation emerges
− The stability of a cluster is reduced by an amount proportional
to the perturbation.

Good for continuous search spaces, where randomly generating the
globally optimal solution is very unlikely.

Major SDS variants
Asynchronous/Parallel SDS

Individual agents perform test phases and diffusion phases in real
time.

+ Enables parallel/grid/cluster/cloud SDS implementations
− Added complexity, can’t be optimised by the compiler.

Good for truly large, or continuous online problems.

Major SDS variants
Lattice SDS

Agents may only communicate with certain agents.

+ Reduces the cost of hardware implementations
− Slightly reduced performance, increased code complexity

Good for on-circuit implementations of SDS, with small-worlds
connectivity.

End of Introduction to SDS

Online Demo animation:
http://www.aomartin.co.uk/sds-animation/

Local Demo animation:
file:///home/amartin/sds-animation/index.html

SDS Library Documentation:
http://www.aomartin.co.uk/sds-library/

SDS Library on PyPi:
https://pypi.python.org/pypi/sds/

http://www.aomartin.co.uk/sds-animation/
file:///home/amartin/sds-animation/index.html
http://www.aomartin.co.uk/sds-library/
https://pypi.python.org/pypi/sds/

Ant nest-site selection

Bishop and I attended a lecture on Robinson’s studies of ant
nest-site selection.

1. An ant doing its duties, stumbles upon a candidate nest.

2. The ant runs around the candidate nest, evaluating the nest
partially and randomly.

3. If the ant is satisfied it returns to the nest and the first ant it
encounters is recruited into the process, and is lead back to
the candidate nest through tandem-running.

4. When the ants detect quorum, they shift behaviour into lifting
and dropping.

That sounds like SDS!

Reducing Diffuse phase

For each
agent a

Is a active?

Poll random
agent p

No

Is p active?

Is p
terminating?

Yes

a copies the
hypothesis

of p

a is
removed

from swarm

No Yes

a takes a
random

hypothesis

No

Poll random
agent p

Yes

p is active and p
and a have the

same hypothesis

Retain
hypothesis

Become
terminating

No Yes

Extra Slides

Stochastic Diffusion Search
Random hypothesis selection All agents randomly assume a

location in the search space as their hypothesis.
Partial evaluation All agents randomly perform a partial test

against their hypothesis. Becoming active or inactive
Recruitment positive feedback loop

Active agents Retain their hypothesis to continue to
partially evaluate it.

Inactive agents Randomly poll an agent, if they poll
an inactive agent then the polling agent
assumes a random hypothesis; if they
poll an active agent the polling agent
assumes the hypothesis of the polled
agent.

Terminate on quorum detection Once the global number of active
agents in the swarm has stabilised, halt the process.
The answer is the hypothesis held by the greatest
number of active agents.

SDS requires global knowledge to detect quorum.

Example hypothesis generating functions

Each SDS needs one function which produces a random hypothesis.

TSP Randomly generated path
def random hypothesis():

return random path(cities)

Go Randomly selected next move
def random hypothesis():

return random valid move(state)

Analogies Randomly selected word from the corpus
def random hypothesis():

return random.choice(corpus)

Search Randomly selected location in a text
def random hypothesis():

return random.randint(0,len(text))

Microtests

A set of functions which each take a hypothesis and return a value.

TSP The distance between two random cities

Go Who wins if the game is completed randomly

Analogies If a random feature between the hypothesis and the
third element is the same as between the first two
elements

Search If a random letter lines up with the search space

def t0(hyp): return text[hyp+0] == ’h’

def t1(hyp): return text[hyp+1] == ’e’

def t2(hyp): return text[hyp+2] == ’l’

def t3(hyp): return text[hyp+3] == ’l’

def t4(hyp): return text[hyp+4] == ’o’

def is upper(hyp): return text[hyp+0].is uppercase

microtests = [t0, t1, t2, t3, t4, is upper]

